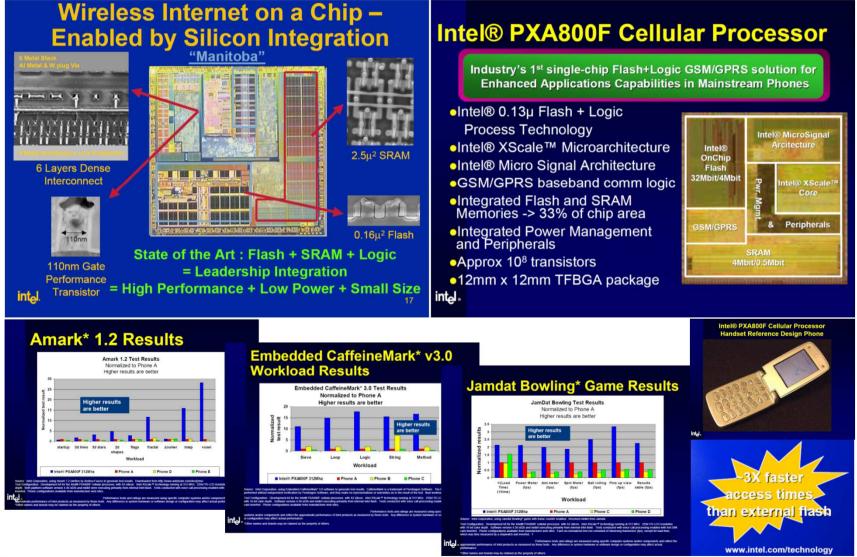
9th LETI Memory Workshop June 27, 2017

Embedded Non-Volatile Memory Evolution and Revolution

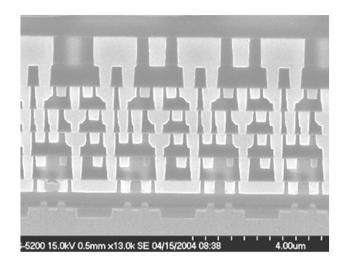
P.Cappelletti, F.Arnaud, A.Maurelli and P.Zuliani STMicroelectronics

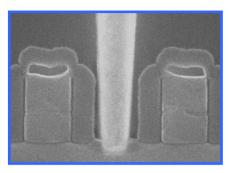
- Introduction
- Embedded NVM Evolution
- It's Time for Disruptive Innovation
- Embedded Phase Change Memory
- Summary

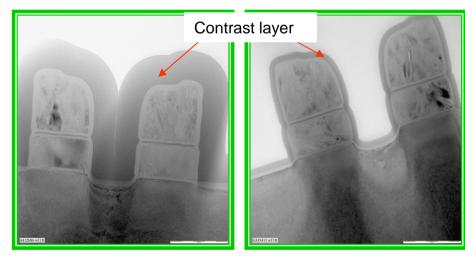


Introduction

- Embedded NVM Evolution
- It's Time for Disruptive Innovation
- Embedded Phase Change Memory
- Summary




2003: Intel Manitoba Project


life.ougmented

2003: 130nm ST Embedded NVM

 $0.16 \ \mu m^2$ Memory Cell

stand-alone process flow

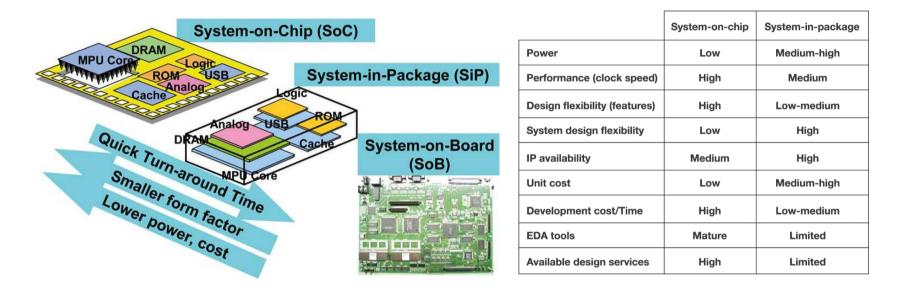
embedded process flow

2003: the "Ideal" Convergence Time

- Embedded NVM demand driven by the largest consumer application
- Most advanced stand-alone NVM technology (130nm NOR) featuring low voltage transistors similar to the ones of state-of-the-art logic CMOS technology
- Two major NOR Flash memory players (Intel and ST) providing embedded NVM technology for system-on-chip integration "with no compromises" (best NVM with best CMOS at best cost and best performance)
- Two slightly different integration approaches:
 - Intel: same process flow of stand-alone memory with 3 additional metal layers and improved LV transistors; dedicated effort to develop a specific cell library on "modified" NOR Flash process
 - ST: specific integration flow to embed the same NOR Flash cell of stand-alone memory in the 130nm logic process, ensuring 100% IP reuse

What Happened Next? 7

- Mobile phones became "smart"
 - PC-like architecture (CPU + DRAM + SSD)
 - no longer demand for super-integration
 - embedded NVM were left without a killer consumer application to drive volumes
- Stand-alone NOR Flash and advanced logic processes started to diverge significantly
 - Lack of process flow synergies
 - Increasing complexity for embedding NVM in advanced logic processes
- Design and manufacturing disaggregation
 - Major stand-alone NVM players disengaged from e-NVM business
 - Proliferation of dedicated NVM solutions for embedded applications
 - Progressive migration from IDM dominated business to IP-provider/fabless/foundry ecosystem



- Introduction
- Embedded NVM Evolution
- It's Time for Disruptive Innovation
- Embedded Phase Change Memory
- Summary

System-On-Chip vs. System-In-Package: a Never-ending Tedious Debate

9

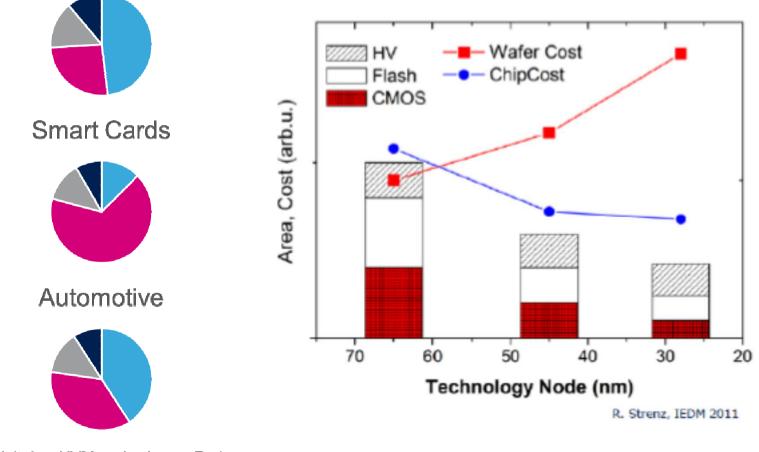
- On-chip super-integration and multi-chip-packaging are complementary technologies:
 - They both bring significant advantages in their own best area of application
 - They both have enough business demand to justify their development effort
 - None of the two will ever cannibalize the other one

Main Applications for e-NVM 10

Automotive SoC's

- Super-integration driven by performance and reliability
- Leading eNVM technology road-map for memory capacity and advanced CMOS
- Most demanding as far as reliability and operating temperature range
- Smart Cards (Secure Micro)
 - They are intrinsically NV memory based single-chip systems
 - Most sensitive to eNVM cell size and process cost
 - Require very low energy programming for contact-less applications
- General Purpose Microcontrollers (MCU)
 - Embedded NVM needed for flexibility (for both code and data)
 - Broad range of applications and large end-customer base

IoT: the next attractive opportunity!


Key Specs for Main e-NVM Applications 11

Application	MCU	SIM Smart cards	ΙοΤ	Auto
Operation Temperature	-40C ~ 125C	-40C ~ 85C	-40C ~ 125C	-40C ~ 165C
Bus Width	x32 / x64	x32 / x38	x32	x144
Standby Current	<1µA @ 25C	<1µA @ 25C	<1µA @ 25C	<1µA @ 25C
Read Current	<5mA / 33MHz	<5mA / 33MHz	<2 mA / 40MHz	<40mA / 200MHz
Access Time	<20ns	<40ns	<25ns	<15ns
Endurance	10K	500K	100K	500K
Data Retention	10yrs	10yrs	10yrs	10yrs
Soldering (a few min. @ 260C)	Yes	Yes	Yes	Yes

Chip Area Partitions and Cost Trends 12

General Purpose

Digital NVM = Analog = Pads

Main e-NVM Technologies

• EEPROM

- + Writing power (F-N tunneling)
- + Reliability
- + Bit granularity
- Cell size (2T cell)
- 15V writing

• 1T NOR Flash

- Writing power (CHE programming)
- + Reliability
- Sector/page granularity
- + Cell size (1T cell)
- 10V writing

Split-gate Flash

- + Writing power (Source Side Injection)
- Endurance (design help needed)
- + Access time
- + Page granularity
- Cell size (1.5T cell)
- > 10V writing

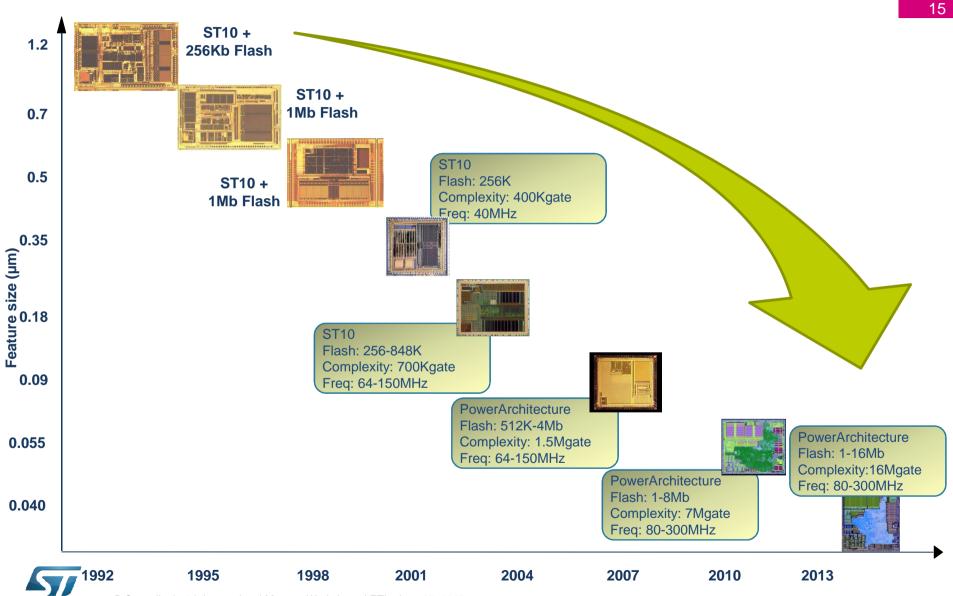
- Process complexity

Low-End products mainly driven by cost

High-End products

mainly driven by high array density and fast random access

Low Power products


mainly driven by power consumption

Most Adopted e-Flash Memory Cells 14

Туре	1T NOR	1.5T (ESF3)	2T	1.5T MONOS	1.5T TFS	1.5T HS3P
Device structure	G F F	SG FG EG N+ N+	CG FG SG ★	FG - Nitride CG SG N+ N+	FG - Nanodots CG SG N* N*	CG SG FG N+ N+
P/E mechanism	CHE / FN	SSI / FN	FN / FN	SSI/HHI	SSI / FN	SSI / FN
PRO's	High density	Power, LV reading path	Power	Power, LV reading path	Power, LV reading path	Power
CON's	Power	Process complexity	Scalability	Reliability	Relatively mature concept	Process complexity

ST Automotive Microcontrollers with e-Flash

P.Cappelletti - 9th International Memory Workshop - LETI - June 27, 2017

life.augmented

- Introduction
- Embedded NVM Evolution
- It's Time for Disruptive Innovation
- Embedded Phase Change Memory
- Summary

CMOS Roadmap Discontinuity 17

- CMOS technology has undergone several disruptive innovations to support MOS transistor scaling
 - High K gate dielectrics
 - Metal gate
 - Fully Depleted SOI
 - Fin FET
 - ...
- Embedding Floating Gate NVM's has become more and more troublesome and costly
 - Process integration complexity
 - 15-20 additional masks
 - Reliability degradation
 - ...

BEOL EM's have great opportunities at and below 28nm

BEOL e-NVM Cells 18

Туре	STT MRAM	OxRAM	CBRAM	PCM
Device structure	Bit Line Word Line (b) Bit Line Complement	AICU TVTIN Pt Oxyde Pt or Cu TIN W	Anode Electrolyte Cathode	SA-GST Heater Heater WL Plug
Maturity	Prototyping	Physical working mechanism and material explorations	Physical working mechanism and material explorations	Production
PRO's	Fast P/E and access time	Fast P/E time	Fast P/E time	Fast P/E time
CON's	Stack complexity Sensing window	Maturity	Maturity	Temperature stability

Emerging Memory Key Players 19

Category	MRAM/STTMRAM	РСМ	RRAM
Pioneers	ECCHARGE ECC		adesto Panasonic
Memory IDM	SAMSUNG SK hynix TOSHIBA	(intel) Western MEIC	TOSHIBA winbond SanDisk Sk hynix
Embedded IDM	CinfineonRENESASQUALCOMMNP	ite.augmented	infineon RENESAS
Fabless	Spin Transfor Technologies Au Alled Minds Company		Cressbar SONY Symetrix Source bit Supplied to the future
Foundries	GLOBALFOUNDRIES		TPSCo

Embedded Emerging Memory Advantages vs. Conventional (FG or CT) e-Flash

20

- Low temperature Back-End-Of-Line integration
 - No impact on transistor process flow \rightarrow easier and faster integration
 - No impact on transistor performance \rightarrow 100% IP reuse
- Lower programming voltage
 - Possibility of using medium voltage transistors already available in std CMOS
- Lower number of additional masks
 - 3-10 additional masks, depending on cell structure and programming voltage

Better performances

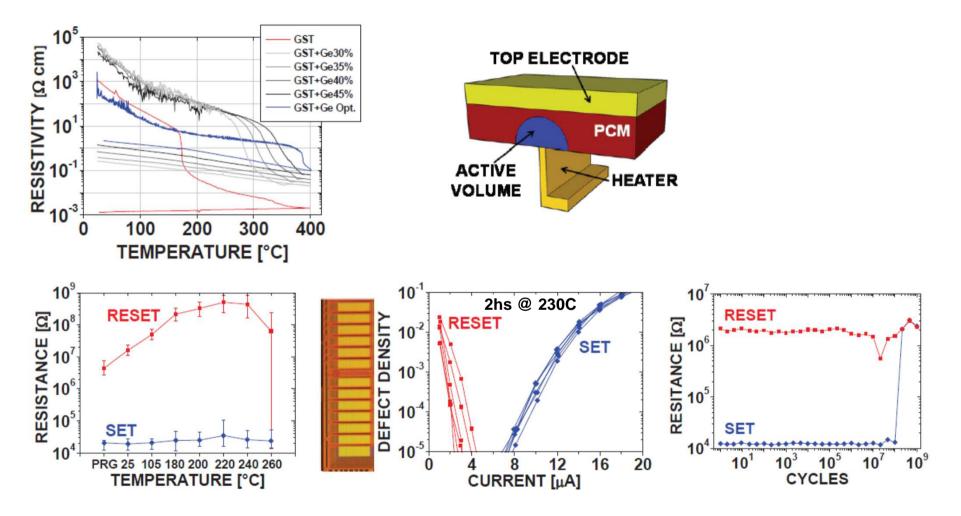
- 10ns-1µs programming time range
- 1-100 pJ programming energy range
- Single bit program granularity (direct over-writing)
- > 1M writing cycles
- Virtually immune to radiation effects

Why Emerging Memories Have Not Yet Taken the Lead in the e-NVM Race?²¹

- Major companies, both IDM's and foundries, have been working on e-EM's for over 10 years
- EM advantages over conventional flash memories were evident and valid also for conventional CMOS, before the most recent disruptive innovations
- Two major concerns have limited so far the adoption of e-EM's:
 - Lack of confidence on EM maturity, manufacturability and reliability due to poor stand-alone memory track record
 - Limited high temperature operation range

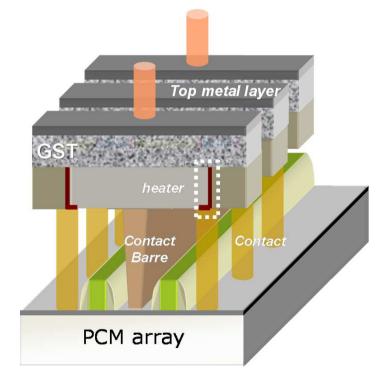
... but CMOS disruption is now calling for change!

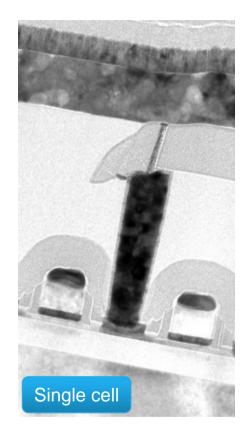
- Introduction
- Embedded NVM Evolution
- It's Time for Disruptive Innovation
- Embedded Phase Change Memory
- Summary


PCM Stand-Alone Memory History 23 1<u>T/1</u>R Taking an EM from Concept to Production – PCM Example 10vr Semi Properties Numonvx of Chalcogenide Intel/ST JDP to Sie Dissertation Micron Early announces 1Gb Glass Identified Commercialize PCM on PCM PCM Work PCM Product 1955 1994 2003 1969 2009 Micron Buys / Numonvx Ancient History Pre-History Modern History ... Numonyx Formed 2014 1966 1970 2006 1999 Micron Withdraws S. Ovshinsky -First G. Moore Intel/Ovonyx JDP Intel/ST demo Phase Change Patent 128Mb PCM Demonstrates to Develop PCM "Numonyx" 1Gb from Market 256b PCM Learnings from PCM: The technology was technically very successful with good yield and reliability But ... In the end, the cost structure was too high for the system value provided in high density stand-alone A lot of PCM units shipped as NOR replacement in Phones

Micron

32 © 2016 Micron Technology, Inc. | May 15, 2017 | Micron Confidential


ePCM for Automotive Applications 24



V.Sousa et al, Symposium on VLSI Technology 2015

28nm High-K Metal Gate FDSOI ePCM 25

- Introduction
- Embedded NVM Evolution
- It's Time for Disruptive Innovation
- Embedded Phase Change Memory
- Summary

- Emerging Memories show clear advantages over conventional NVM for embedded applications
 - Less additional masks
 - Lower impact on CMOS process front-end (development effort and time to market)
 - Better performance (writing speed, endurance, single bit overwrite
 - Rad-hardness
 - ...
- Poor technology maturity and lack of high volume stand-alone manufacturing history has delayed the wide adoption of EMs for embedded applications
- CMOS transition to FDSOI HKMG and to FinFet is making more and more costly and difficult to embed conventional NVMs
- EMs have great opportunities to become mainstream at and below 28nm
- Data retention at high temperature and soldering capability will be two of the most relevant features for selecting the winner

Thanks for your attention!

